Masked Label Learning for Optical Flow Regression
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Abstract—Optical flow estimation is a challenging task in com-
puter vision. Recent methods formulate such task as a supervised-
learning problem. But it often suffers from limited realistic
ground truth. In this paper, a compact network, embedded with
cost volume, residual encoder and deconvolutional decoder, is
presented to regress optical flow in an end-to-end manner. To
overcome the lack of flow labels, we propose a novel data-driven
strategy called masked label learning, where a large amount
of masked labels are generated from the FlowNet 2.0 model
and filtered by warping calibration for model training. We also
present an extended-Huber loss to handle large displacements.
With pretraining on massive masked flow data, followed by
finetuning on a small number of sparse labels, our method
achieves state-of-the-art accuracy on KITTI flow benchmark.

I. INTRODUCTION

Optical flow estimation is a popular task in computer vision.
It has a variety of applications, such as object tracking [!],
motion detection [2], action recognition [3] and visual odom-
etry [4].

Classical approaches attempt to solve the estimation of
optical flow as an energy minimization process with varia-
tional methods. These approaches usually fail on the cases of
large displacements from fast motion [5], [6]. Later methods
introduce descriptor matching algorithms to find matching cor-
respondences on adjacent frames [7], [8], [9] and adopt coarse-
to-fine schemes or advanced interpolation techniques [10],
[11], [12] to adapt for the scenarios of large displacements.
Convolutional neural networks (CNNs) are utilized to describe
image patches and bring further improvements on flow esti-
mation. Nevertheless, the whole process of these approaches
is time-consuming because they often involve multiple steps,
including feature extraction, matching selection, interpolation,
and flow refinement.

Recently, fully-convolutional network (FCN) [13] is intro-
duced to optical flow estimation that enables the end-to-end
learning of dense flow maps [14], [15], [16]. Generally, the
deep models with FCN structure for flow regression require a
large number of labels for training. However, it is high-cost to
annotate enough flow data if we use manual selections or extra
equipments. To solve the lack of labels, computer graphical
techniques are employed to synthesize flow datasets, such as
FlyingChairs [14] and FlyingThings3D [17], but there remains
a gap between synthetic virtual images and realistic scenes,
which limits the adaptation of models. In addition, several
approaches begin to use an unsupervised fashion to train
models by photometric differences between source images
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Fig. 1. An example of predicted flow map on KITTI Raw dataset [20]. Top:
input frames. Bottom left: FlowNet 2.0 [16] estimated flow map. Bottom right:
Our estimated flow map. We colorize the flow maps with the tool provided
by Sintel [21].

and reconstructed images [18], [19]. Although unsupervised
approaches can overcome the drawback of insufficient labeled
data, such models are difficult to behave well on the regions
of object boundaries, local ambiguities, and textureless areas,
etc.

In this paper, we argue that sufficient data is still a prereq-
uisite for deep model training and therefore propose a novel
data-driven strategy named as masked label learning. Instead
of using synthetic data or unsupervised scheme, we employ an
existing method FlowNet 2.0 [16] to generate a large amount
of flow maps on target scenes. To reduce the potential errors in
the generated maps, we add an extra filtering step by warping
calibration. Each pixel in the flow map is checked by the
photometric distance between referenced image and warped
image. The flow values that cannot pass the verification will
be masked out and excluded from subsequent model training.

For the network architecture, we design an encoder-decoder
model. In this model, the correlation layer [14] is introduced
as the head part to compute cost volume on feature pairs.
The residual network (ResNet) [22] is embedded as the main
body to learn image features and encode matching information.
Three deconvolutional layers are appended at the end of
structure to upsample feature maps and regress the final dense
flow map. Without complex cascaded networks like FlowNet
2.0 [16] or coarse-to-fine patterns like SpyNet [15], our model
can predict favorable results after feeding mass data.

Different from the classification task, the regression of op-
tical flow needs to estimate real values and it often adopts /1,
£5 or Charbonnier norm as loss function [23]. However, these
functions are easily disturbed by possible outliers in labels
or large deviations between predicted values and ground-
truth. Here, we extend traditional Huber loss [24] with a
square-root term to alleviate this problem. Comparative results
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Fig. 2. Schematic diagram of masked label preparation. The origin flow map is generated from Flownet 2.0 [

calibration.

illustrate that the extended-Huber loss is more robust to large
displacements in road scenes.

In addition to pretraining on the masked data, we also
finetune the model based on a few sparse labels provided by
KITTI flow dataset [20], [25]. As shown in Fig. 1, after the
finetuning, our model can estimate finer result than FlowNet
2.0 [16]. Our method also outperforms other domain-agnostic
approaches (distinguished from the approaches with extra
stereo or multiview information) on KITTI flow 2012 bench-
mark [20], which demonstrates the effectiveness of our strat-
egy. Furthermore, the qualitative results on video sequences
on Cityscapes dataset [20] illustrate the adaptability of our
model. The contributions of this work are summarized below:

o We propose a data-driven strategy of masked label learn-
ing where a large amount of flow labels are generated
by the FlowNet 2.0 [16] model and filtered by warping
calibration.

o We develop a compact model integrated with a cost vol-
ume, residual blocks, and deconvolutional layers, which
enables the end-to-end optical flow regression.

o An extended-Huber loss function is presented to train the
model, which is more robust to large displacements.

e Our method achieves state-of-the-art results on KITTI
Flow 2012 dataset [20]. The results on Cityscapes
dataset [26] also show its adaptability.

II. RELATED WORK

Research on optical flow could be traced back to basic
variational approach proposed by Horn and Schunck [5]. Such
pioneer work couples the brightness constancy and global
smoothness assumption to an energy-minimization process.
Based on the variational method, Black and Ananda present
a robust framework to deal with outliers in both the data
and spatial terms [0]. Subsequent works explore more robust
functions [27], [28] or introduce better constraints [29], [30].
However, most variational methods are difficult to handle
the case of large displacements, so that feature matching
algorithms are introduced to the variational framework [7],
[8], [9], [31]. In addition, some approaches focus on interpo-
lation methods to obtain dense optical flow maps from sparse
matchings [10], [11], [12].

With CNN models that show great capability on high-level
vision tasks [32], researchers attempt to adopt CNN models
to represent image features and learn the optical flow. For
example, Gadot and Wolf suggest using a siamese CNN to

], followed by label filtering by warping

compute the descriptors of input pair of images [33]. Bailer et
al. calculate CNN-based features on different scales combined
with a thresholded hinge loss for training [8]. Xu et. al
compute the cost volume on compact features extracted from
CNN model and adapt semi-global matching for accurate
flow results [34]. Besides, several methods leverage extra
constraints. Bai et al. utilize instance-level segmentation with
epipolar prior to improve flow results in traffic scenes [35]. Hur
and Roth exploit forward-backward consistency and occlusion
symmetry to estimate optical flow [36].

Inspired by the success of FCN model applied in semantic
segmentation [13], Dosovitskiy et al. [14] design two FCN
models, FlowNetS and FlowNetC, to regress the flow map in
an end-to-end manner. To capture the motion between frames,
the models are pretrained on a synthetic dataset. Ranjan
and Black [15] embed spatial-pyramid formulation into deep
network and make similar performance with FlowNetC model.
IIg et al. [16] give an upgraded version called FlowNet 2.0
which cascades the basic models and significantly improves
the predicted results. Here, we employ FlowNet 2.0 to generate
flow labels and eventually our developed model outperforms
the guided model on target benchmark.

Another family of research focus on the unsupervised
learning. Yu et al. [ 8] train the FlowNet-based model with an
unsupervised loss function measured via brightness constancy
and smoothness assumptions. Meister et al. [19] define a
bidirectional census loss to train network model and achieves
competitive results with supervised methods on synthetic
datasets.

Similar to our approach, Zhu et al. [37] present a guided
flow learning method, where FlowFields [8] is employed to
generate proxy flow labels for the training of CNN-based
estimators. In our work, we further add warping calibration
to obtain masked labels and design a new integrated model to
learn flow maps, which leads to more accurate results.

III. METHODS

In this section, we introduce the method of masked label
learning for optical flow regression. First, we explain the
label preparation including generation and filtration in details.
Second, we describe the model architecture for flow learning.
Third, the definition and characteristics of extended-Huber loss
is discussed. Given a pair of consecutive images I and I, our
goal is to estimate a dense flow field F}, : I; — I, between
I; and Is.
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Fig. 3. Our model architecture.

A. Masked Label Preparation

It is difficult to collect flow labels by means of manual
annotation on realistic scenes. Here, we employ FlowNet
2.0 [16] as the guided model and select raw KITTI dataset [20]
as the target scene to generate flow labels. Unlike those
synthetic datasets that provide entirely accurate labels [14],
[17], there remain a few errors in our generated data. To reduce
the adverse effects, we add a warping calibration where the
reconstructed image is exploited to detect errors and conduct
filtering. As shown in Fig. 2, the reconstructed image I is
inversely warped from the source image of second frame
I> based on generated flow map F,. Then we subtract the
warped image I and the source image of first frame I; to get
error map F;. If the errors exceed a pre-specified threshold
0, we mask out the flow labels on the original map F, and
obtain the final filtered flow map F),,. During training time,
the loss calculated on the masked areas will not be backward
propagated.

B. Model Architecture

The model architecture is illustrated in Fig. 3. Our model
is composed of various components where we use distinct
colors to indicate different blocks. The convolution block
generally contains a convolutional layer followed by batch
normalization (BN) and rectified linear unit (ReLU) layer,
and the deconvolutional block replaces the convolutional layer
with the deconvolutional layer. We introduce the correlation
layer from FlowNet [14] to encode the matching cues between
image pairs. The residual block is the basic unit of ResNet [22]
which comprises three or four consecutive convolution blocks
with split-transform-merge strategy.

Actually, a modified version of ResNet-50 network [22]
is embedded into our model as the main body. Instead of
computing cost volume on raw pixels of image pairs [;
and I,, we adopt feature descriptors from CNNs which are
more robust with local context information. Specifically, we
utilize the bottom part of ResNet-50, which contains three
convolution blocks, a pooling layer and four residual blocks,
to learn the feature maps F); and Fb. The spatial scale of
Fy and F, is downsampled to 1/8 of the original image
due to pooling and strided-convolution, with the shape of
h x w X ¢, where h, w and c stand for feature height, width
and channels. The cost volume F°*! is computed on F} and
F5 by correlation layer [14] to encode matching cues. Here,
the max displacement parameter in correlation layer is set to
d and the consequent cost volume F°°** has the shape of
h x w x (2d 4+ 1). The feature map on referenced frame
(first frame) F; should not be abandoned due to its pixel-
level information for preserving details. To this end, we apply
another convolution block with kernel size 1 x 1 on feature
map F, and obtain transformed feature F;‘. We concatenate
it together with the cost volume F°°** and get hybrid feature
representation [F¢oncat,

After concatenation, the feature F°°™¢% is fed into the
rest part of ResNet-50 structure, and then the feature map
F7¢s is learned. To recover the spatial size, we append three
deconvolution block to upsample the feature map accompanied
with the reduction of channels. Behind F%°°" we apply a
convolutional layer with kernel size 3 x 3 x 2 to regress the
final flow map F), with two channels. The extended-Huber loss
is computed on the predicted flow map £}, and the flow label
F,,.



C. Extended-Huber Loss

In flow regression task, large displacements or occlusions
in source images, and potential outliers in labels easily result
in excessive deviations between predict values and ground
truth, which affects the convergence of training and the final
performance of the model. Here, we extend the traditional
Huber loss [24] with square root function for large deviations.
We hope that the loss function can be more sensitive to
small shifts and more robust to large disturbance. The whole
regression loss L., is normalized as:

1
Lreg(6:9) = 7577 D lelyi —4) ()

1EN,

where y represents the predict flow value, § denotes the label
value, N, is the set of valid pixels, and the extended-Huber
function [.(.) is defined as:

1a? if |z| < 1,
le(z) = ¢ |z| — 3 if 1 < |z| < 4, )
4+/|z| — 2 otherwise.

IV. EXPERIMENTAL RESULTS

In this section, we first train the model on KITTI raw
dataset and then evaluate the performance on KITTI Flow
datasets [20], [25]. The extended-Huber loss is compared with
L1 loss and Huber loss. Both qualitative and quantitative
results are given. We also submit the test images to KITTI
Flow 2012 benchmark and test our model on Cityscapes
dataset [26].

A. Implementation Details

a) Datasets: The KITTI dataset [20] is composed of
real road scenes captured by vehicle-mounted cameras and
laser scanners. It provides a small number of accurate yet
sparse optical flow ground truth. In addition, a large amount of
raw image sequences are provided without ground truth. For
flow label preparation, we select 21,179 pairs of consecutive
images from the city, residential, and road categories of the
raw dataset. The “FlowNet2-ft-kitti” model [16] is employed
to generate flow maps on the selected pairs, and these original
flow maps are filtered as Fig. 2 to obtain masked flow labels,
where the error threshold § is set to 10. We further finetune
our model on the 394 pairs of sparse labels, including 194
pairs from KITTI 2012 [20] and 200 pairs from KITTI
2015 [25]. We further select a sequence of “Bielefeld” city
from Cityscapes [26] to test our model.

b) Evaluation Metrics: We mainly utilize the average
end-point error (AEE) and the flow error (Fl) to evaluate the
performance of models. The Fl represents the percentage of
optical flow outliers which is more identifiable to the large
flow values. The Fl errors on non-occluded regions (Noc) and
all areas (All) are evaluated separately.

¢) Training Details: Our implementation of the model is
based on a customized Caffe version [38]. We use the “poly”
learning rate policy where the momentum and weight decay
are set to 0.9 and 0.0001 respectively. When pretraining on
masked labels, the base learning rate is set to 0.01. When
finetuning on sparse labels, we turn down the base learning
rate to 0.001. For data augmentation, we randomly resize input
images with a scale between 0.5 and 2.0 and crop them into
512 x 320. The batch size is set to 16 due to the limitation
of GPU memory. At training time, the image list is shuffled
to avoid similar samples. For the parameters in correlation
layer, the max displacement and padding size are set to 32,
which supports the maximum encoding range up to 256 on
the original scale of input image.

B. Comparison Based on Different Loss Functions

TABLE I
RESULTS YIELDED ACCORDING TO DIFFERENT LOSS FUNCTIONS.
Loss Function ‘ KITTI 2012 ‘ KITTI 2015
EPE Fl-Noc FI-All | EPE  Fl-Noc  FI-All
41 1.01 4.39 6.88 2.01 9.67 13.86
Huber [24] 1.03 4.44 6.74 1.95 9.57 13.62
Extended-Huber | 0.99 4.14 6.76 1.96 8.92 13.09

We compare the extended-Huber loss with normal ¢; loss
and Huber loss. Here, we use these three loss to pretrain the
model on masked flow labels respectively. We set the max
iterations to 200K so that about 150 epochs are conducted. In
Table I, the EPE and Fl error are evaluated on both KITTI 2012
and 2015 datasets. We find that our presented extend-Huber
loss is able to reduce the rate of bad predictions (Fl error),
especially the “Noc” areas, with an average 6% improvement
compared to ¢; loss and an average 4% improvement com-
pared to Huber loss. Meanwhile, the EPE of the three loss
functions are at the same level. The result proves that the
extended-Huber loss is more robust to the large displacements.

In Fig. 4, we give several examples of the model which
is pretrained with extend-Huber loss. Here, the number of
max iterations is set to 400K to fully exploit the potential
of masked label data. Our model can handle challenging
scenarios including fast motion, narrow street and traffic inter-
section. The regions such as shadows, occlusions and strong
illuminations also have reliable estimates. There remain some
local areas like object boundaries that need to be improved.

C. Results on KITTI 2012 Benchmark

Based on the pretrained model, we finetune it on the training
samples of KITTI 2012 and 2015 datasets. The parameter of
max iterations is set to 90K. As shown in Fig. 5, some local
details, such as poles, handrails and object boundaries, are
refined by finetuning.

We submit the test images to the benchmark of KITTI Flow
2012. In Table II, we list the test results of recent domain-
agnostic methods. The “> x pixels” is also the error rate where
z indicates the threshold to determine bad pixels. Our method
outperforms other approaches on most tests. Especially on the



TABLE II
COMPARISON WITH OTHER MONOCULAR METHODS ON THE KITTI 2012 TEST DATASET[20]. OUR STRATEGY ACHIEVES STATE-OF-ART ACCURACY AND
OUTPERFORMS OTHER METHODS BASED ON MOST EVALUATION METRICS.

> 2 pixels > 3 pixels > 4 pixels > 5 pixels EPE .
Methods Noo Al | Nee ToAl | Neo Al | Nee oAl | Noc Al | Runtime
LDOF [7] 2443 3389 | 2193 3130 | 2022 2958 | 1883 2807 | 56px 124 px | T min
FlowNet [14] 4933 5534 | 37.05 4449 | 2936 3756 | 2411 32.67 | 50px  9.1px | 0.08s
SPyNet [15] 1654 2575 | 1231 2097 | 997 1796 | 839 1576 | 20px  41px | 0.16s
EpicFlow [10] 1083 2088 | 7.88 1708 | 635 1465 | 536 1286 | 1.5px 3.8 px 15
DeepFlow [39] 931 2044 | 722 1779 | 608 1602 | 531 1469 | 15px 5.8 px 17
DiscreteFlow [9] | 924 2037 | 623 1663 | 477 1424 | 389 1246 | 13px  36px | 3 min
PatchBatch [33] 773 1780 | 529 1417 | 418 1195 | 352 1036 | 13px 33px | 50s
FlowFields [¢] 733 1669 | 557 1401 | 402 1098 | 395 1021 | 14px 35px | 23s
RicFlow [17] 734 1678 | 496 1304 | 399 1088 | 342 938 | 13px 32 px 5s
InterpoNet [11] 723 17.58 | 528 1457 | 384 1187 | 3.16 1018 | 1.0px 24 px | 3 min
FlowField CNN [40] | 742 1687 | 480 1301 | 372 1068 | 3.04 906 | 12px 30px | 23s
FlowNet2 [16] 784 1268 | 482 880 | 351 688 | 278 569 | 1.0px  18px | 0.12
CNNF + PMBP [41] | 850 19.02 | 470 1487 | 322 1273 | 245 1123 | 1.1px 33 px | 30 min
MirrorFlow [36] 610 1070 | 438 820 | 355 688 | 3.02 602 | 12px 26px | 11 min
UnFlow [19] 6.84 1192 | 428 842 | 310 661 | 241 544 | 09px l4px | 0125
SDF [35] 552 1020 | 380 7.69 | 303 640 | 256 556 | 1.0px 23 px -
Ours 651 1080 | 3.63 689 | 240 504 | 177 399 | 08px 1dpx | 08s

second image, colorized flow prediction, error map. The error map is drawn by development kits provided by KITTI dataset, where the blue regions represent
correct predictions and the red areas indicate incorrect estimates.

Fig. 5. Qualitative results of our final fine-tuned model on testing pairs of KITTI Flow 2012 dataset. From left to right: input image of first frame, input
image of second image, colorized flow prediction, error map. The error map is captured from our submission, which scales linearly between O (black) and
>= 5 (white) pixels error. Red denotes all occluded pixels, falling outside the image boundaries.

index of “> 5 pixels”, our model achieves the Fl error of
1.77 on non-occluded regions and the Fl error of 3.99 on all
regions, which gets an improvement of about 30% compared
to SDF method [35]. The results demonstrate the effectiveness
of our training strategy and model capability. The leaderboard
can be seen on the website of KITTI Flow 2012 benchmark!,
and our method is abbreviated as “MLL".

Thttp://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow

D. Results on Cityscapes

The Cityscapes dataset is a popular dataset of road
scenes [20]. We select a sequence of “Bielefeld” city in this
dataset to test our model. Compared to KITTI dataset [20],
the images of Cityscapes dataset have distinct differences
on scale and brightness. As shown in Fig. 6, our method
can also estimate reasonable flow maps, which illustrates the
adaptability of our model.
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Fig. 6. Qualitative results of our model on a sequence of Cityscapes dataset.

V. CONCLUSION

In this paper, we address the task of optical flow estimation.
Considering the lack of flow labels, a novel strategy of masked
label learning is proposed to conduct label generation and
warping filtering together to acquire a large amount of labels
for model training. We design a compact network including
cost volume, residual blocks, and deconvolutional blocks to
learn optical flow map. Moreover, an extended-Huber loss is
given to cope with large displacements. Experimental results
on both KITTI Flow and Cityscapes datasets demonstrate the
effectiveness of our method. In the future, we attempt to
use unsupervised loss to further improve the performance of
models.
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