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Abstract. Disparity estimation is a challenging task in the field of com-
puter stereo vision. In this paper, we propose a multi-granularity fully
convolutional network architecture for end-to-end dense disparity estima-
tion. First, we use single well-pretrained residual network for extraction
of multi-granularity and multi-layer features. Second, correlation layers
at three different granularities are used to gain hierarchical matching cues
between left and right feature maps. Third, we conduct concatenation-
deconvolution operations to output disparity maps. Finally, the exper-
imental results show that our method achieves state of the art results,
taking the second place on the KITTI Stereo 2012 task.

Keywords: Multi-granularity · Correlation · Concatenation-
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1 Introduction

Disparity estimation is a classical problem in the field of stereo vision. It has
been extensively applied to many areas such as view synthesis, object detection,
and robot navigation. The main goal of disparity estimation is to calculate the
displacement of corresponding pixels between left and right images, where cor-
responding pixels result from identical 3D points projected onto the two image
planes. Displacement values at each location forms so-called disparity map.

It is challenging to perform disparity estimation accurately, particularly pre-
dict dense disparity map. The majority of stereo algorithms treat such task as
a matching problem, measuring similarity between two corresponding patches
of left and right images. From this point of view, the main idea of those algo-
rithms is to develop powerful feature representation for image patches. Then
the resulting feature vectors can be employed to compute match cost and then
pick the best matching pixel between left and right images. In recent years, deep
convolutional neural network (CNN) has demonstrated remarkable performance
in many fields including computer vision, speech recognition, natural language
processing, self-driving, and big data analysis through representation learning of
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hierarchical features based on a large scale labeled data. With utilization of CNN
features, such patch-based matching methods can be significantly improved in
terms of accuracy of disparity prediction.

Except for disparity calculation based on similarity of image patches, dense
disparity map estimation problem could be considered as a pixel-wise labeling
task, where each pixel would be assigned a real-value disparity. Lately, inspired
by the success of fully-convolutional network (FCN) [1] for semantic segmenta-
tion task, such an end-to-end learning structure was introduced to predict dis-
parity map [2]. The combination of encoder (top-down) and decoder (bottom-up)
architecture can effectively link the global scene information with local disparity
estimation, which leads to further improvements in both accuracy and speed.

In general, FCN models for disparity estimation contain a correlation mod-
ule to extract matching information from left and right feature maps. Several
approaches like [2,3] deploy correlation operations on low-level feature maps. In
our opinion, matching cues not only exist in low-level features, but also occur in
high-level features. Furthermore, the category information in high-level feature
maps could be utilized to compensate matching cues lost in low-level features.
For example, in an urban scene, adjacent road and sidewalk are difficult to dis-
tinguish from low-level features due to similar colors and textures. However, it
would be convenient to differentiate in high-level semantic features. As a result,
this paper attempts to extract matching cues from multiple granularity feature
maps and aggregate them together. In the proposed method, we first exploit well-
pretrained ResNet-50 [4] to obtain different granular hierarchical features. Sec-
ond, different granular correlation layers are presented to produce feature maps
that embed a diversity of matching cues. Finally, we design a concatenation-
deconvolution sub-structure to aggregate all the matching information from dif-
ferent granularities and carry out regression of pixel-level disparity values.

The main contributions of this paper are summarized below:

– We learn to represent three different granularities of matching information.
– Those matching cues are aggregated to enhance capabilities of stereo disparity

regression.
– On the KITTI Stereo 2012 task [5], the proposed multi-granularity FCN

achieves state-of-the-art performance.

2 Related Work

There has been a large amount of work on stereo disparity estimation. In [6] pro-
posed by Scharstein et al., stereo algorithms are regarded to generally include
the following four steps: matching cost computation, cost aggregation, dispar-
ity computation, and disparity refinement. Several local descriptors based on
gradient or binary patterns are designed to compute local matching cost [7,8],
accompanying by some global optimization methods to improve results [9].

Zbontar and LeCun [10] used CNN for matching cost computation. Luo
et al. [11] proposed a siamese network that extracted marginal distributions
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over all possible disparities for each pixel. Chen et al. [12] presented a multi-
scale deep embedding model that fused features vectors learned within different
scale-spaces. Shaked and Wolf [13] proposed a highway network architecture with
a hybrid loss that conducted multi-level comparison of image patches.

Inspired by other pixel-wise labeling tasks such as semantic segmentation
[1,14,15], the FCN is introduced for the end-to-end learning of disparity map.
In 2016, Mayer et al. [2] proposed DispNet for real time disparity estimation.
There is a structure similar to their previous work called FlowNet [3], which
directly inspires us to use correlation layers for encoding matching cues.

Lately, several researchers extended FCN architecture to make further
improvement for disparity or depth estimation. Kendall et al. [16] proposed an
architecture called GC-Net that incorporates contextual information by means
of 3D convolutions over a cost volume. Gidaris and Komodakis [17] presented a
cascade network that had a pipeline to detect, replace, and refine the predicted
errors. Kuznietsov et al. [18] proposed a semi-supervised approach for monocular
depth map prediction. During training phase, they not only use ground-truth
depth for supervised learning, but also define an alignment loss based on photo
consistency. In this paper, we first employ well-pretrained ResNet-50 to have
extraction of multi-scale and multi-layer feature maps and then adopt three
different granularitie of correlation layers to get a diversity of matching infor-
mation. Those matching cues are further aggregated to improve performance of
stereo disparity regression. Finally, on the KITTI Stereo 2012 task [5], the pro-
posed multi-granularity FCN achieves state-of-the-art results, ranking second
compared to the other 94 competitors.

3 Model Architecture

Our multi-granularity FCN (MG-FCN) architecture is shown in Fig. 1. This is
a data-driven model that enables end-to-end disparity learning. It is observed
from Fig. 1 that it could be divided into three sub-structures: representation of
multi-granularity features, correlation layers and concatenation-deconvolution.

3.1 Representation of Multi-granularity Features

Unlike computing matching cost on the pair of original images, this paper
extracts three granularities of hierarchical features of left and right raw images.
For this sake, we exploit a ResNet-50 that was well pretrained on a large scale
benchmark of ImageNet. ResNet [4] is currently believed as one of the best CNN
model due to allowing the network to have much deeper layers. As shown in
Fig. 1, such a ResNet-50 model comprises three blocks that output three differ-
ent granularities of features, respectively, which implies that the feature maps of
M1

L, M1
R, M2

L, M2
R, M3

L, M3
R will be used as inputs of incoming correlation

layers.
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Fig. 1. Our MG-FCN architecture. Res Blocks indicate components in residual net-
work, which comprises convolutional, batch normalization, and ReLU layers with split-
transform-merge strategy, and the blue cubes represent feature maps. (Color figure
online)

3.2 Correlation Layers

The three granularities of correlation layers, which involves the description of
matching cost between corresponding patches, are critical in the MG-FCN archi-
tecture. Fischer et al. [3] defined a correlation layer in the FlowNet for optical
flow estimation. This paper presents three different granularities of correlation
layers for a diversity of matching cues. Given one displacement value, correlation
layers are used to convolve left and right feature maps of Mi

L, Mi
R (i = 1, 2, 3)

and further make summation of resulting multi-channel maps to generate one
final matching feature map. The correlation of two patches centered at x1 in ML

i

and x2 in MR
i is defined as

c(x1, x2) =
∑

oε[−k,k]×[−k,k]

〈Mi
L(x1 + o),Mi

R(x2 + o)〉 (1)

where K = 2k + 1 is the size of patch. We set the maximum displacement βi

(i = 1, 2, 3) to restrict search of possible patch-pairs. The correlation c(x1, x2)
is only calculated in the neighborhood of size si = βi + 1, which implies uni-
direction searching on Mi

R. Finally, the size of resulting feature maps for each
of three granularities of correlation layers is (si × w × h), where w indicates the
width and h the height.
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Table 1. The layers in our Concatenation-deconvolution sub-structure, where
Ch. I/O denotes channels of input and output feature maps, Scale means the scal-
ing factor of output feature map size. The corr, conv, concat deconv and res
layer denote correlation, convolutional, concatenate, deconvolutional layer and resid-
ual blocks respectively. The superscript and subscript of layer indicate the stride and
kernel size of convolutional or deconvolutional layer.

3.3 Concatenation-Deconvolution

The concatenation-deconvolution sub-structure is designed to conduct feature
aggregation and regression of stereo disparity values based on preceding feature
maps that contain three different granularities of matching information from the
correlation layers. As shown in Fig. 1 and Table 1, three residual blocks are used
to further encode corresponding matching features before concatenation. In order
to reduce the number of feature channels, we employ one 1∗1 convolutional layer
to merge the concatenated feature maps. Finally, three deconvolutional layers
and an extra convolutional layers are adopted to generate stereo deparity values.

The last convolutional layer outputs the predicted disparity maps. For end-
to-end learning, it is required to define a loss function to measure the errors
between the predicted disparity maps and the ground truths. This paper directly
computes the absolute errors (L1-norm) between the predicted values di and the
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ground-truths d̂i for each valid disparity pixels. Compared to other norms used
for loss functions, we believe that the L1-norm function is more intuitive to
describe the deviation between predicted disparities and the ground truths.

Loss(Il, Ir,D) =
1

NΩD

∑

iεΩD

||di − d̂i||1 (2)

where ΩD denotes the set of valid pixels that have the ground truths, NΩD
the

number of valid pixels, Il the left image, Ir the right image and D the ground
truth of disparity map.

4 Experimental Results

We evaluated our method on CityScapes [19] and KITTI Stereo 2012 [5] datasets.
Both of the two datasets provide stereo images and disparit ground truths. On
CityScapes benchmark, the disparity maps are pre-computed by the SGM algo-
rithm [9]. We use the “gtF ine” subset that contains 5,000 images. The official
split on this subset is that 2,975 images are exploited for training and 500 images
are used for validation. On KITTI Stereo 2012 dataset, there are 194 training
images with sparse disparity ground truth and 195 test images. To facilitate the
comparison among different architectures, we split the training dataset like that
of Luo et al. [11], in which 160 images are randomly selected for training and
the remaining 34 images are adopted for validation.

In order to verify the performance of the MG-FCN, we compare it with SG-
FCNs on both CityScapes and KITTI Stereo 2012. In each of three SG-FCNs, a
single-granularity feature is extracted, followed by one correlation layer, residual
blocks, and three deconvolution layers to learn disparity.

4.1 Implementation Details

We initially pre-trained the ResNet-50 [4] on a large scale ImageNet dataset. The
three feature maps at conv1, pool1 and res4a layer of well-pretrained ResNet-50
are used for the three granularities of correlation operations. In three granu-
larities of correlation layers, we set the maximum displacement d = 96, 48, 24,
respectively. In the concatenation-deconvolution sub-structure, we adopted the
same initialization procedure as He et al. [20] in the convolution and deconvolu-
tion layers involved. Meanwhile, we used Caffe framework and stochastic gradient
descent (SGD) with momentum of 0.9 to train the MG-FCN. To avoid overfit-
tings, we employed L2 regularization on the weights with decay of wd = 0.0001.

Considering that the KITTI dataset only contains small and sparse labeled
samples, we first trained the MG-FCN on CityScapes dataset with the initial
learning rate lr = 0.01 and then fine-tuned it on KITTI dataset with the initial
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learning rate lr = 0.001. We exploited the polynomial learning rate policy with
90k iterations. Moreover, we took a random resize factor of α ∈ [0.5, 2.0] and the
crop size of 513 ∗ 321 for data augmentation.

4.2 Results

The experimental results in Table 2 show the test error of three single-granularity
FCN (SG-FCN) models and MG-FCN model on the validation dataset of
CityScapes and KITTI Stereo. The SG-FCN #1 means that we concatenate
correlation layer on conv1 feature maps of ResNet-50. The SG-FCN #2 and SG-
FCN #3 are linked to pool1 and conv4a feature maps, respectively. The items
> i pixels (i = 1, 2, 3, 4) indicate different thresholds adopted to decide whether
an estimated disparity value is correct. Numerical results in Table 2 measure the
proportion of mistaken disparity pixels. The above comparison demonstrates
that the MG-FCN model performs significantly better than the three single-
granularity FCN (SG-FCN) models through the aggregation of matching cues
on multiple granularities. Figure 2 shows the qualitative results on CityScapes,
KITTI validation and test datasets respectively.

Table 2. The test error of SG-FCNs and MG-FCN across different error thresholds on
the CityScapes and KITTI 2012 dataset

CityScapes KITTI

>2 px >3 px >4 px >5 px >2 px >3 px >4 px >5 px

SG-FCN#1 5.38 3.16 2.28 1.81 4.61 2.86 2.06 1.60

SG-FCN#2 5.92 3.33 2.37 1.88 5.24 3.12 2.23 1.73

SG-FCN#3 7.20 4.01 2.75 2.12 8.64 4.67 2.89 2.00

MG-FCN 4.35 2.60 1.90 1.55 4.31 2.67 1.94 1.52

In Table 3, we evaluated our method on KITTI 2012 benchmark [5]. The
item “Noc” refers to evaluation on non-occluded regions, i.e., regions for which
the matching correspondence is inside the image domain, while “All” refers to
evaluation on all image regions for which ground truth could be measured. “End-
Point” denote the average end-point deviation between predicted disparity values
and ground truth. Our MG-FCN achieves state-of-the-art results, which out-
performs most patch-based methods [10,11,21] on both accuracy and runtime.
Among FCN methods [2], our model is also competitive, just behind the GC-Net
[16], ranking second on the ratings (http://www.cvlibs.net/datasets/kitti/eval
stereo flow.php?benchmark=stereo).

http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
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(a) CityScapes data qualitative results on validation dataset. From left: left stereo input
image, ground truth, disparity prediction

(b) KITTI data qualitative results on validation dataset. From left: left stereo input
image, disparity prediction, error map.

(c) KITTI data qualitative results on test dataset. From left: left stereo input image,
disparity prediction, error map.

Fig. 2. Qualitative results. By learning to aggregate multi-granularity matching
cues, our method could perform accurate disparity estimation on challenging scenarios.
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Table 3. Comparision to state-of-art results on the KITTI 2012 benchmark

>2 pixels >3 pixels >4 pixels >5 pixels End-Point Runtime (s)

Noc All Noc All Noc All Noc All Noc All

GC-NET [16] 2.71 3.46 1.77 2.30 1.36 1.77 1.12 1.46 0.6 px 0.7 px 0.9

L-ResMatch [13] 3.64 5.06 2.27 3.40 1.76 2.67 1.50 2.26 0.7 px 1.0 px 48

PBCP [21] 3.62 5.01 2.36 3.45 1.88 2.74 1.62 2.32 0.7 px 0.9 px 68

Displets v2 [22] 3.43 4.46 2.37 3.09 1.97 2.52 1.72 2.17 0.7 px 0.8 px 265

MC-CNN-arct [10] 3.90 5.45 2.43 3.63 1.90 2.85 1.64 2.39 0.7 px 0.9 px 67

Content-CNN [11] 4.98 6.51 3.07 4.29 2.39 3.36 2.03 2.82 0.8 px 1.0 px 0.7

Deep Embed [12] 5.05 6.47 3.10 4.24 1.73 2.32 1.92 2.68 0.9 px 1.1 px 3

DispNetC [2] 7.38 8.11 4.11 4.65 2.77 3.30 2.05 2.39 0.9 px 1.0 px 0.06

MG-FCN (Ours) 3.73 4.41 2.17 2.68 1.56 1.97 1.22 1.56 0.8 px 0.8 px 0.6

5 Conclusions

In this paper, we propose a MG-FCN model for end-to-end disparity estima-
tion. In such a new pixel-level disparity prediction method, one ResNet-50 that
was well pretrained on ImageNet is first employed to represent multi-scale and
multi-layer features of raw left and right images. Second, we present three dif-
ferent granularities of correlation layers to seek a diversity of matching cues.
Thrid, the feature maps that include matching information are concatenated
and merged so as to perform stereo disparity regression. We evaluate the perfor-
mance of the proposed MG-FCN model on both CityScapes and KITTI Stereo
2012 dataset. Finally, our method achieves state-of-the-art results on KITTI
Stereo 2012 benchmark. In the future, we will focus on semi-supervised or even
unsupervised learning methods for such a challenging problem. Meanwhile, it
is very interesting to us to compress the above-mentioned model for real-time
applications such as self-driving car.
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