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Abstract. Stereo matching task has been greatly improved by convolu-
tional neural networks, especially the fully-convolutional network. How-
ever, existing deep learning methods always overfit to specific domains.
In this paper, focus on domain adaptation problem of disparity estima-
tion, we present a novel training strategy to conduct synthetic-realistic
collaborative learning. At first, we design a compact model that consists
of shallow feature extractor, correlation feature aggregator and dispar-
ity encoder-decoder. Our model enables end-to-end disparity regression
with fast speed and high accuracy. To perform collaborative learning,
we then propose two distinct training schemes, including guided label
distillation and semi-supervised regularization, both of which are used
to alleviate the lack of disparity labels in realistic datasets. Finally, we
evaluate the trained models on different datasets that belong to various
domains. Comparative results demonstrate the capability of our designed
model and the effectiveness of collaborative training strategy.

Keywords: Stereo matching · Collaborative learning ·Disparity ·Guided
label distillation · Semi-supervised regularization.

1 Introduction

Disparity estimation aims to find corresponding pixels between rectified stereo
images [18]. It is a fundamental low-level task in computer vision, which has a
wide range of applications such as depth prediction [32], scene understanding [12]
and robotics navigation [37]. In recent years, deep learning methods [43, 29, 24,
31, 6, 26, 41] continuously improve the performance on specific scenes, while the
domain adaptation for stereo matching gains more attention.

A popular pipeline for disparity estimation gets involved in matching cost
computation, cost aggregation, disparity calculation, and disparity refinement [36].
Previous methods often manually design reliable features to describe image
patches to localize matching correspondings [15, 5, 34]. These methods are easily

† State Key Laboratory of Intelligent Technology and Systems, Beijing National
Research Center for Information Science and Technology.



2 G. Yang, Z. Deng, H. Lu and Z. Li

Fig. 1. Examples of predicted results of DispNetC [29] and our SRC model. From top to
down, we test the models on Scene Flow dataset [29], Middleburry Stereo dataset [35]
and KITTI Stereo 2015 dataset [30]. From left to right, we give left input images
and predicted disparity maps by DispNetC-pretrained, DispNetC-finetuned, and our
SRC model. All of the disparity maps are colorized by the devkit [30]. With the SRC
training, our model can adapt to various domains

affected by textureless areas, shadow regions, and repetitive patterns. Since the
convolutional neural network (CNN) exhibits great representative capacity on
image classification [25], several approaches replace above-mentioned hand-craft
features with CNN features [43, 28], which significantly increases the accuracy of
disparity estimation. Inspired by the progress in semantic image segmentation
task [27, 7], modern stereo methods adopt fully-convolutional network (FCN) to
learn disparity map [29, 24]. These methods utilize siamese structure to process
binocular inputs and design a correlation part to automatically encode matching
costs. This structure enables an end-to-end disparity regression and further im-
proves estimated accuracy and processing speed. In order to predict reasonable
disparities on target scenes, these models are always pretrained on synthetic
datasets and finely-tuned on realistic datasets. However, the resulted models
are easily overfitted on specific domains. For example, in Fig. 1, the DispNetC
model [29] pretrained on scene flow dataset is able to predict considerable results
on synthetic scenes, but leading to mediocre outputs on realistic scenes. Mean-
while, the model finely-tuned on KITTI dataset [30] behaves well on road scenes,
while suffering on indoor and virtual environments. From the above observation,
existing deep methods cannot well address domain adaptation problem.

In this paper, our goal is to train better adaptable model for stereo matching.
Instead of successively training on the synthetic and realistic dataset, we propose
a novel synthetic-realistic collaborative (SRC) learning strategy, where virtual
and real images are fused to train our network synchronously. We hope that the
model maintains its properties on various domains through SRC training. Specif-
ically, for virtual images in the synthetic dataset, high-quality disparity labels
can be directly fetched to train the model in a supervised learning mode. For
real images, since there are not enough disparity labels, we present two different
schemes: 1) Guided label distillation. Here, an existing method is employed to
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generate disparity maps that are used as guided labels for the realistic dataset,
and then the supervised training can be seamlessly migrated to the realistic
dataset. 2) Semi-supervised regularization. Unlike the supervised loss computed
between predicted disparities and labels, a photometric distance is measured be-
tween the source image and the reconstructed image at the referenced view. In
our experiments, the reconstructed image is warped from source image at the
other view based on the current predicted disparity map. Along with photometric
distance, we also add smoothness constraints to penalize disparity incoherence.
Thus the semi-supervised regularization means that either the supervised loss or
the unsupervised photometric loss is selected depending on whether labels are
provided or not. The experimental results in Sec. 4 illustrate that both of guided
label distillation and semi-supervised regularization make sense.

To take full advantage of the capacity of SRC learning, we design an end-to-
end disparity regression model. The encoder-decoder architecture is also adopted
in our model, embedded with a shallow feature extractor and a correlation fea-
ture aggregator. We use the extractor to obtain image features and the aggre-
gator to combine matching cost between stereo features. The following encoder
is a ResNet-like model to learn disparity information. The decoder is composed
of several deconvolutional blocks to regress the full-size disparity map. We eval-
uate the SRC models on different datasets across various domains, including in-
door [35], outdoor [30] and virtual [29] scenes. Compared to the baseline models
which are only trained on an individual dataset, the SRC model shows signifi-
cant superiorities, especially on unseen domains. Besides, we set different ratios
between synthetic dataset and realistic dataset to exploit data properties for
SRC learning. Our main contributions are summarized below:

– We develop a compact model that integrates shallow feature extractor, cor-
relation aggregator and encoder-decoder to regress disparity map in an end-
to-end manner.

– We propose a novel synthetic-realistic collaborative learning strategy. Two
schemes as guided label distillation and semi-supervised regularization, are
presented to conduct SRC model training.

– Comparative results are evaluated on different stereo datasets across vari-
ous domains, which demonstrates the effectiveness of our SRC strategy for
domain adaption problem.

2 Related Work

Disparity estimation from stereo images has been studied for several decades.
Scharstein et al. [36] provide a taxonomy of stereo algorithms and analyze the
typical four-step pipeline. In this section, we would not track back to early stereo
methods but focus on recent deep learning approaches.

Zbontar and LeCun [43] first introduce CNN to describe image patches and
compute matching cost. Luo et al. [28] design a siamese structure embedded with
a product layer to calculate marginal distributions over all possible disparities.
A multi-scale deep model presented by Chen et al. [8] leverages appearance data



4 G. Yang, Z. Deng, H. Lu and Z. Li

to learn disparity from a rich embedding space. Shaked and Wolf et al. [38]
propose a highway network along with a hybrid loss to measure the similarity
between image patches on multi-levels. Compared to traditional approaches,
the above methods adopt CNN features to conduct matching cost computation
and improve the accuracy of disparity prediction with a considerable margin.
However, these methods are still time-consuming due to the post-processing
steps or complex optimization framework.

Inspired by FCN used in semantic segmentation task [27, 7], Mayer et al. [29]
raise an encoder-decoder architecture called DispNet to enable end-to-end dis-
parity regression. DispNet adopts a correlation operation as FlowNet [11] where
the matching cost can be directly integrated to encoder volumes. Pang et al. [31]
provide a cascade structure to optimize residues between predicted results and
ground-truth values. Liang et al. [26] propose two-stage pipeline where the sec-
ond sub-network is used to refine initial estimated disparity by measuring fea-
ture constancy. A few methods adopt three-dimensional convolutions to learn
disparity. For example, Kendall et al. [24] integrate contextual information by
3D convolutions over a cost volume. A two-stream network proposed by Yu et
al. [42] realizes cost aggregation and proposal selection respectively. Chang et
al. [6] combine spatial pyramid network with 3D convolutional layers to incor-
porate global context information. Although these methods achieve state-of-the-
art results on several stereo benchmarks by successively training on synthetic
dataset [29] and realistic dataset [14, 30], there remains the domain adaptation
problem because their models always overfit to specific domains belonging to cur-
rent training datasets. Unlike the common training schedule, we propose SRC
training strategy, which makes our model more reliable to domain shifts.

Another class of approaches attempts to exploit other information to improve
stereo matching. Guney and Geiger [17] introduce object-aware knowledge into
MRF formulation to resolve possible stereo ambiguities. Yang et al. [41] combine
the high-level semantic information to optimize disparity prediction. Song et
al. [39] utilize the cues of edge detection to recover disparity details. In addition,
several approaches [1, 33, 4, 9] tackle semantic-level or instance-level information
to improve the accuracy of optical flow which is a similar scene-matching task as
disparity estimation. We argue that the introduction of other information may
not be effective because domain adaptation is a wide-spread problem in vision
tasks. Moreover, increased information also brings extra computations.

Recently, some unsupervised learning methods are proposed for depth predic-
tion and scene matching. Garg et al. [13] estimate single-view depth by minimiz-
ing projection errors in stereo environment. Godard et al. [16] conduct left-right
consistency check in a fully-differentiable structure. Yu et al. [22] fuse photo-
metric loss and smoothness constancy to predict optical flow. Tonioti et al. [40]
leverage on the confidence measures to finetune a standard stereo model. A
guided flow method presented by Zhu et al. [45] employs FlowFields [2] to gen-
erate flow labels for flow learning. Our idea of SRC learning is inspired from
these unsupervised methods. Concretely for the semi-supervised regularization,
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Fig. 2. Model architecture. The model can be divided into three parts: shallow feature
extractor, feature aggregator and encoder-decoder. For SRC learning, the input data
are fused with synthetic and realistic images

we combine the supervised loss and unsupervised loss together to train our model
on the fusion set of synthetic and realistic data.

Our method follows the encoder-decoder architecture to regress disparity
map. We utilize ResNet model [19] as the backbone and integrate the correla-
tion part [11, 29] to compute cost volumes between stereo pairs. Focus on the do-
main adaptation problem, SRC learning strategy is proposed to train the model.
Specifically, for the lack of disparity labels in the realistic dataset, we provide
two schemes as guided label distillation and semi-supervised regularization. Fi-
nally, our experimental results evaluated across different datasets demonstrate
the effectiveness of the SRC-learning.

3 Method

In this section, we first describe the model architecture for disparity regression
in Sec. 3.1 and then explain the SRC learning strategy, including the guided
label distillation and semi-supervised regularization in Sec. 3.2.

3.1 Model Architecture

Our model is shown in Fig. 2 and layer structural definition is detailed in Tab. 1.
Given a pair of images Il and Ir, the goal is to estimate the dense disparity
map D. We use the ResNet-50 [19] as the backbone of our model. According to
data flow, the model can be divided into three parts: shallow feature extractor,
correlation feature aggregator and encoder-decoder. For the inputs of network
at training time, we fuse synthetic and realistic images to conduct SRC learning.
Our model enables accurate prediction of disparity map.
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Table 1. Layer-by-layer structure of model. The “conv block” denotes the convolu-
tional block, where a convolutional layer is followed by batch normalization and ReLU
activation. The “res block” denotes the residual block designed by [19]. The “corr 1d”
denotes the single-directional correlation [29]. The “deconv block” denotes the decon-
volutional block that is composed of deconvolutional layer, batch normalization and
ReLU layer.

Layer Attributes Channels I/O Scaling Inputs

1. Shallow Feature Extractor

conv block1 1 kernel size = 3, stride = 2 3 / 64 1/2 input stereo images
conv block1 2 kernel size = 3, stride = 1 64 / 64 1/2 conv block1 1
conv block1 3 kernel size = 3, stride = 1 64 / 128 1/2 conv block1 2
max pooling kernel size = 3, stride = 2 128 / 128 1/4 conv block1 3
res block2 1 kernel size = 3, stride = 1 128 / 256 1/4 max pool block1
res block2 2 kernel size = 3, stride = 1 256 / 256 1/4 res block2 1
res block2 3 kernel size = 3, stride = 1 256 / 256 1/4 res block2 2
res block3 1 kernel size = 3, stride = 1 512 / 512 1/8 res block2 3

2. Feature Aggregator

conv block pre kernel size = 3, stride = 1 512 / 256 1/8 res block3 1
corr 1d max displacement = 32, single direction [29] 256 / 33 1/8 conv block pre

conv trans kernel size = 3, stride = 1 256 / 256 1/8 conv block pre
concat aggregate corr 1d and conv trans (256 + 33) / 289 1/8 corr 1d, conv trans

3-1. Disparity Encoder-Decoder

res block3 2 kernel size = 3, stride = 1 409 / 512 1/8 concat
res block3 3 kernel size = 3, stride = 1 512 / 512 1/8 res block3 2
res block3 4 kernel size = 3, stride = 1 512 / 512 1/8 res block3 3
res block4 1 kernel size = 3, stride = 1, dilated pattern 512 / 1024 1/8 res block3 3
res block4 2 kernel size = 3, stride = 1, dilated pattern 1024 / 1024 1/8 res block4 1
res block4 3 kernel size = 3, stride = 1, dilated pattern 1024 / 1024 1/8 res block4 2
res block4 4 kernel size = 3, stride = 1, dilated pattern 1024 / 1024 1/8 res block4 3
res block4 5 kernel size = 3, stride = 1, dilated pattern 1024 / 1024 1/8 res block4 4
res block4 6 kernel size = 3, stride = 1, dilated pattern 1024 / 1024 1/8 res block4 5
res block5 1 kernel size = 3, stride = 1, dilated pattern 1024 / 2048 1/8 res block4 6
res block5 2 kernel size = 3, stride = 1, dilated pattern 2048 / 2048 1/8 res block5 1
res block5 3 kernel size = 3, stride = 1, dilated pattern 2048 / 2048 1/8 res block5 2

conv block5 4 kernel size = 3, stride = 1 2048 / 512 1/8 res block5 3
deconv block1 kernel size = 3, stride = 2 512 / 256 1/4 conv block5 4
deconv block2 kernel size = 3, stride = 2 256 / 128 1/2 deconv block1
deconv block3 kernel size = 3, stride = 2 128 / 64 1 deconv block2

disp conv kernel size = 3, stride = 1 64 / 1 1 deconv block3

Shallow feature extractor We use the shallow part of ResNet-50 model to
extract image features F l and Fr. This part contains three convolutional blocks,
a max-pooling layer and four residual blocks. It subsamples the input images in
two stages: “conv block 1 1” and “max pool1”, which results in 1/8 scaling to
raw images. Compared with original images, the features obtained from shallow
extractor are more robust to local context.

Correlation Feature Aggregator A correlation layer [29] is adopted to com-
pute cost volumes Fc between F l and Fr. We only perform single-direction
search due to epipolar property. Both max displacement and padding size are
set to 32 so that channels of Fc are 33. Besides, left features F l are preserved
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Fig. 3. Diagram of guided label distillation and semi-supervised regularization

for the detailed information on reference view. The cost volumes Fc and left
features F l are aggregated to form hybrid map Fh. The feature aggregator inte-
grates image features and matching information together for posterior disparity
learning.

Encoder-Decoder After feature aggregation, we feed hybrid map Fh into
encoder-decoder to regress full-size disparity map D. As depicted in Tab. 1,
the encoder consists of 12 residual blocks. Several convolutional operations in
residual blocks use dilation pattern [7] for larger receptive fields. In the decoder,
we place three deconvolutional blocks to gradully upsample the spatial size of
feature maps. An extra one-channel convolutional layer is appended at the end
to regress full-size disparity map. Our model is also fully-convolutional so that
it enables end-to-end disparity learning.

3.2 SRC Learning

As introduced in Sec. 1, the idea of SRC learning is to find an available training
solution on fused datasets, especially on the realistic datasets. To enable training
on real images, we explain two schemes below:

Guided label distillation A direct way for collaborative learning on realistic
dataset is that we adopt an existing method to generate disparity maps. Al-
though the labels predicted by guided method are not exactly accurate as syn-
thetic labels, we find they can help our model converge to a certain level. This
scheme has two advantages: 1) The guided method can produce large amounts of
disparity labels so that we do not need manual annotations or extra equipments,
such as Lidar and depth camera. 2) It enables seamless supervised training on
realistic datasets, which makes our model better adaptable to target domains.

In our experiments, we employ SGM algorithm [20] as the guided method.
Since the generated disparity maps are not dense, we only measure loss on valid
pixels. The loss function is expressed as:

Lsup =
1

NV

∑
i,j∈V

‖Di,j − D̂i,j‖1, (1)
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where V is the set of valid disparity pixels, NV is the number of valid pixels, D is
the predicted disparity map and D̂ is the disparity label map. Here we adopt the
l1 norm to measure distance between predictions and labels. The experimental
results in Sec. 4.3 show that the SRC model trained with guided label distillation
outperforms the models trained on the individual datasets.

Semi-supervised regularization We introduce unsupervised training based
on spatial transformation to constitute semi-supervised regularization for SRC
learning. As shown in Fig. 3(b), stereo images are fed to SRC model and we
obtain predicted disparity map. Based on the disparity map, we warp the right
image to left view and get the reconstructed image. Our image reconstruction
adopts bilinear sampling where the output pixel is the weighted sum of nearest
two input pixels [21]. Such sampling operation is differentiable and enables loss
propagation. Compared with guided label distillation, semi-supervised regular-
ization further gets rid of the dependence on guided method. Here, we measure
the photometric loss [22] between source left image and reconstructed image on
all pixels:

Lp =
1

N

∑
i,j

‖Ĩli,j − Ili,j‖1, (2)

where Il denotes source left image and Ĩl denotes reconstructed left image. In
addition, we define smoothness loss to penalize discontinuity on disparity maps:

Ls =
1

N

∑
i,j

[ρs(Di,j −Di+1,j) + ρs(Di,j −Di,j+1)], (3)

where ρs(·) is the spatial smoothness penalty implemented as generalized Char-
bonnier function [3]. The photometric loss and the smoothness loss are made as
the unsupervised loss for realistic datasets. The overall semi-supervised loss is
regularized as:

Lsemi = δLsup + (1− δ)(λpLp + λsLs), (4)

where δ ∈ {0, 1}, λp denotes the weight of photometric loss and λs denotes
the weight of smoothness loss. When training SRC model with semi-supervised
regularization, δ is set to 1 for synthetic data and 0 for realistic data.

4 Experimental Results

In this section, we fuse Scene Flow dataset [29] and Cityscapes dataset [10] to
train the model, where the former is the synthetic dataset and the latter is
the realistic dataset. The well-trained models are evaluated on Scene Flow test
set [29], KITTI stereo 2015 [30] and Middleburry stereo 2014 [35] which rep-
resent virtual, outdoor and indoor domains, respectively. Related datasets and
evaluation metrics are introduced in 4.1. Implementation details are described
in 4.2. Ablation studies on guided label distillation and semi-supervised regular-
ization are provided in 4.3 and 4.4, respectively. Finally, we compare our method
with other methods in 4.5.
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4.1 Datasets and Evaluation Metrics

The Scene Flow dataset [29] is a synthetic dataset for scene matching includ-
ing disparity estimation and optical flow prediction. This dataset is rendered by
computer graphics techniques with background scenes and 3D foreground mod-
els. It contains 22,390 images for training and 4,370 images for testing. Image
size is H = 540 and W = 960.

The Cityscapes dataset [10] is a realistic dataset that is released for urban
scene understanding. It provides stereo images and corresponding disparity maps
which are pre-computed by SGM algorithm [20] so that we directly use these
disparity maps as guided labels. Gathering the stereo pairs from different subsets,
we can fetch over 20,000 images with the size of H = 1024 and W = 2048. These
subsets contain “train”, “validate”, “test” and “extra train” sets.

The KITTI Stereo 2015 dataset is also released for real-world autopilot
scenes. It contains 200 training and 200 testing image pairs. Since the disparity
labels for testing set are not released, we evaluate our model on the training set.
The average image size is H = 376 and W = 1240.

The Middleburry Stereo 2015 dataset [35] provides 30 pairs for indoor scenes,
where 15 each for training and testing. This dataset offers different resolutions
and we select quarter resolution for model evaluation.

We use the Scene Flow training split [29] and Cityscapes dataset [10] to
train our model. To keep balance, we respectively choose 22, 000 images from
Scene flow dataset and Cityscapes dataset so that a maximum number of 44, 000
images can be used for SRC training. The Scene Flow testing set [29], KITTI
Stereo datasets [14, 30] and Middleburry Stereo 2014 [35] are selected for model
evaluation. We apply the end-point-error (EPE) and the bad pixel error (D1) as
evaluation metrics, where the threshold in D1 is set to 3. For KITTI datasets,
the errors in both non-occluded regions (Noc) and all pixels (All) are calculated.
In addition, we depict colorized disparity maps and error maps for better visual-
ization. In the error maps such as Fig. 4, blue areas represent correct predictions
and red regions indicate mistaken estimates.

4.2 Implementation Details

Our model shown in Tab. 1 is implemented on a customized Caffe [23]. We use
the “poly” learning rate policy where current learning rate equals to the base one
multiplying (1− iter

max iter )power [5, 44]. At training time, we set base learning rate
to 0.01, power to 0.9, momentum to 0.9 and weight decay to 0.0001 respectively.
The maximum iterations and batch size are set to 200K and 16 for ablation
studies in Sec. 4.3 and Sec. 4.4. We select the GPU of NVIDIA Titan Xp for
model training and testing.

For data augmentation, we adopt random resize, color shift and contrast
brightness adjustment. The random factor is between 0.5 to 2.0. The maximum
color shift along RGB axes is set to 10 and maximum brightness shift is set to 5.
The contrast multiplier is between 0.8 and 1.2. The “cropsize” is set to 513×513
and batch size is set to 16.
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For parameters in semi-supervised regularization Eq. 4, the loss weights λp
and λs for photometric term and smoothness term are set to 1.0 and 0.1. The
Charbonnier terms α, β and ε in smoothness loss term are 0.21, 5.0 and 0.001
as described in [22].

4.3 Ablation Study for Guided Label Distillation

We conduct four groups of experiments on guided label distillation. As described
in 4.1, Scene Flow dataset [29] and Cityscapes dataset [10] are selected as syn-
thetic and realistic dataset. Here, the guided labels for realistic data are pre-
computed by SGM method [20]. The first column in Tab. 2 indicates the current
dataset settings for training, where the values of “Synth.” and “Real.” denote
the used ratios of synthetic and realistic images. For example, the values in first
line of Group 4 are 1/8 and 1, which means 2, 750 synthetic images and 22, 000
realistic images are used for training.

The first group of experiments are performed to compare the SRC-trained
model with synthetic-trained model and realistic-trained model. On scene flow
validation set [29], the error rate of SRC-trained model is flat to synthetic-
trained model and much lower than realistic-trained model. On KITTI Stereo
2015 dataset [30], the SRC-trained model performs much better than synthetic-
trained model and also achieves higher accuracy than realistic-trained model.
On Middleburry dataset [35], the SRC-trained model outperforms the other two
models with a large margin, where the EPE is reduced from 2.42 to 1.82 com-
pared to synthetic-trained model, and the D1 error is improved by 8% compared
to realistic-trained model. This group of experiments proves the effectiveness of
guided label distillation.

Table 2. Results of guided label distillation.

Settings Scene Flow [29] KITTI Stereo 2015 [30] Middleburry [35]
Synth. Real. EPE D1 Noc EPE All EPE Noc D1 All D1 EPE D1

Group 1: Compare SRC-trained model with individual-trained models.
1 0 2.89 10.69 3.63 3.65 16.90 17.22 2.42 15.08
0 1 6.50 19.05 1.26 1.29 6.21 6.42 3.36 20.93
1 1 2.92 10.33 1.21 1.23 5.91 6.15 1.82 12.10

Group 2: SRC models trained with different amounts of data.
1/8 1/8 3.00 10.94 1.23 1.25 6.12 6.34 1.87 12.37
1/4 1/4 2.96 10.60 1.20 1.22 5.83 6.09 1.88 12.39
1/2 1/2 2.94 10.50 1.21 1.24 5.95 6.19 1.94 13.13
1 1 2.92 10.33 1.21 1.23 5.91 6.15 1.82 12.10

Group 3: SRC models trained with different amounts of realistic data.
1 1/8 2.99 12.00 1.24 1.26 6.32 6.59 1.88 12.16
1 1/4 2.88 10.14 1.24 1.26 6.18 6.44 1.84 12.09
1 1/2 2.96 11.02 1.20 1.23 5.97 6.21 1.88 13.01
1 1 2.92 10.33 1.21 1.23 5.91 6.15 1.82 12.10

Group 4: SRC models trained with different amounts of synthetic data.
1/8 1 3.18 12.25 1.23 1.25 5.99 6.18 2.11 14.16
1/4 1 3.05 11.48 1.20 1.22 5.91 6.13 2.08 13.33
1/2 1 3.00 10.75 1.22 1.24 5.86 6.08 1.88 12.90
1 1 2.92 10.33 1.21 1.23 5.91 6.15 1.82 12.10
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Fig. 4. Qualitative results of SRC-trained models with guided label distillation.
These results are tested on Scene Flow validation set [29], Middleburry Stereo 2014
dataset [35] and KITTI Stereo 2015 dataset [30] respectively

In the second group of experiments, we hold the balance between synthetic
and realistic datasets and reduce training data. We observe that the SRC mod-
els trained by 1/4 and 1/2 ratios yield similar accuracy to the full-data train-
ing model. When the ratio decreases to 1/8, the error rates increase on Scene
Flow [15] and KITTI Stereo [30] datasets. Based on this group of experiments,
we suggest 5k or more images to train SRC models for guaranteed quality.
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In the third group, we fix the synthetic data ratio and increase the ratio of
realistic data, and no significant improvement is gained from incremental realistic
images. In contrast, we keep the quantity of realistic dataset and raise the ratio of
synthetic images in fourth group of experiments. The results on Scene Flow [29]
and Middleburry dataets [35] are gradually improved. Here, the key difference
between synthetic and realistic datasets is the quality of disparity labels. We
analyze that, when the model converges to a certain level during training, the
potential errors in guided labels may hinder the further boosts. Nevertheless, a
certain amount of guided labels for realistic dataset is still a prerequisite of SRC
learning.

In Fig. 4, we show several qualitative examples of SRC-trained models on
different scenes. From the colorized disparity maps and error maps, we find that
the synthetic-trained model is keen to object edges, while the realistic-trained
model behaves better consistency on big objects, such as road and car. The SRC-
trained model combines the advantages to provide more reasonable predictions
on various domains.

4.4 Ablation Study for Semi-supervised Regularization

For SRC learning by semi-supervised regularization, we calculate supervised loss
for synthetic data and unsupervised loss for realistic data as described in Sec. 3.2.
We conduct two groups of experiments to illustrate the effects of such regular-
ization. In the first group of experiments, the SRC-trained model is compared to
synthetic-trained and realistic-trained models. With synthetic labels, the SRC-
trained model performs much better than realistic-trained model on all bench-
marks. When fed with realistic data and constraints of photometric consistency,
the SRC-trained model achieves higher accuracy on KITTI Stereo [30] and Mid-
dleburry [35] datasets than synthetic-trained model. These three experiments
validate the semi-supervised regularization.

In the second group of experiments, we explore the impacts of different
amounts of data. Similar to guided label distillation, we adopt four ratios of
training data. With the increase of ratio, no remarkable improvement can be
found on Scene Flow dataset [29] and Middleburry dataset [35], and a little

Table 3. Results of semi-supervised regularization.

Settings Scene Flow [29] KITTI Stereo 2015 [30] Middleburry [35]
Synth. Real. EPE D1 Noc EPE All EPE Noc D1 All D1 EPE D1

Group 1: Compare SRC-trained model with individual-trained models.
1 0 2.89 10.69 3.63 3.65 16.90 17.22 2.42 15.08
0 1 8.81 24.22 1.88 2.11 8.85 9.55 5.69 29.28
1 1 2.89 10.56 1.39 1.50 7.14 7.74 2.33 15.01

Group 2: SRC models trained with different amounts of data.
1/8 1/8 2.96 10.62 1.46 1.57 7.31 7.89 2.19 13.86
1/4 1/4 2.95 10.90 1.52 1.63 7.21 7.82 2.46 15.15
1/2 1/2 2.90 10.49 1.48 1.63 7.22 7.93 2.55 15.88
1 1 2.89 10.56 1.39 1.50 7.14 7.74 2.33 15.01
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Fig. 5. Error maps of SRC-trained models with semi-supervised regularization. From
top to down, we provide Scene Flow [29], Middleburry Stereo 2014 [35] and KITTI
Stereo 2015 [30] examples, respectively. From left to right, we provide left input images
and error maps by realistic-trained, synthetic-trained and SRC-trained models

progress emerges on KITTI dataset [30]. We argue that the quantity of training
data is not the core factor for semi-supervised regularization. Besides, the overall
results of semi-supervised regularization are worse than guided label distillation.
We analyze that the photometric loss measured between potential correspond-
ing image patches only provides weak guidance. Compare with supervised loss
computed on SGM labels [20], the unsupervised loss is easily influenced by am-
biguities and illuminations. Even so, the semi-supervised regularization enables
SRC learning without ground-truth labels or guided labels on realistic datasets.

In Fig. 5, we show several predictive examples. In contrast to the realistic-
trained model that is the purely unsupervised model, the SRC-trained model
predicts more accurate disparities on edges, sharp positions, and small objects.
Compared to synthetic-trained model, the SRC-trained model further reduces
the errors on local ambiguity areas.
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Table 4. Comparative results to other methods.

Methods
Scene Flow [29] KITTI Stereo 2015 [30] Middleburry [35]

Running time (s)
EPE D1 All EPE All D1 EPE D1

SGM [20] 7.29 16.18 5.02 14.79 8.29 25.35 1.47
DispNetC [29] 2.33 10.04 1.61 10.84 3.09 18.85 0.05

CRL [31] 1.67 6.70 1.40 8.18 1.77 13.47 0.16
iResNet [26] 1.27 4.90 0.70 2.38 1.74 11.06 0.13

EdgeStereo [39] 1.33 5.26 1.48 8.64 1.57 11.38 0.21
SRC (Ours) 2.72 8.45 1.12 5.64 1.67 10.96 0.29

4.5 Compare with other methods

To exploit the potential of SRC-learning, we adopt guided label distillation, and
we increase the training iterations from 200K to 500K, and the batch size from
16 to 32. More training epoches further improve the performance of our model.
We compare our SRC method to other classical or deep learning-based methods,
including SGM [20], DispNetC [29], CRL [31], EdgeStereo [39] and iResNet [26].
The deep learning-based models [29, 31, 39, 26] are pretrained on Scene Flow
dataset without finely tuning on specific datasets.

We list the results of different methods in Tab. 4. We find all of the deep
learning methods outperform classical SGM algorithm on three benchmarks. Al-
though our SRC model ranks at penultimate on Scene Flow dataset [29], our
method ranks second on both KITTI Stereo 2015 benchmark [30] and Middle-
burry dataset [35]. It is remarkable that KITTI Stereo 2015 dataset and Mid-
dleburry dataset are unseen in the training period so that it illustrates that our
SRC-learning can help model better adapt to various domains. We believe that
the SRC learning can be used as a general strategy for other deep learning-based
stereo matching models.

5 Conclusion

As a core problem in low-level vision, disparity estimation is required to have
the properties of fast speed, high accuracy, and adaptability to various domains.
In this paper, we develop a compact model that is composed of shallow feature
extractor, matching feature aggregator and encoder-decoder. We also present
SRC learning strategy for joint training on synthetic and realistic datasets. Two
schemes, i.e. guided label distillation and semi-supervised regularization, are
provided to mitigate for the lack of labels in realistic datasets. Our experimental
results evaluated on different datasets demonstrate the effectiveness of our deep
learning model and SRC strategy.
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